Multiple voltage-dependent mechanisms potentiate calcium channel activity in hippocampal neurons.

نویسندگان

  • E T Kavalali
  • M R Plummer
چکیده

Neuronal voltage-gated calcium channels provide a pathway for calcium influx that is required for processes ranging from intracellular signaling to alterations in cellular excitability. In hippocampal neurons, we have characterized a subtype of dihydropyridine-sensitive L-type calcium channels (Lp channel) that shows multiple kinds of voltage-dependent potentiation of its activity. One type of potentiation is elicited by low-voltage stimuli (-10 mV) and can be seen in dual-pulse protocols in which a transient hyperpolarization is interposed between conditioning and test pulses. The second type of potentiation is elicited by much higher voltages (+60 mV) and is selectively deactivated at hyperpolarized voltages. We have compared these types of potentiation in the Lp channel, the "standard" L-type channel, and the cardiac L-type channel. Our results show that the high-voltage potentiation is common to all three channel types. The low-voltage form of potentiation, however, is unique to the Lp channel. Thus, the Lp channel shows two kinds of potentiation that differ in their voltage dependence and rate of decay. Therefore, calcium channel plasticity in the hippocampus has a variety of forms distinguished by their stimulus requirements and duration.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Role of NMDA receptors and voltage-dependent calcium channels in augmenting long-term potentiation of the CA1 area in morphine-dependent rats

  The involvement of NMDA receptors and voltage-dependent calcium channels in augmentation of long-term potentiation (LTP) was investigated at the Schaffer collateral CA1 pyramidal cell synapses in hippocampal slices of morphine dependent rats, using primed-burst tetanic simulation. The amplitude of the population spike and its delay were measured as indices of increase in postsynaptic excitabi...

متن کامل

Spike timing dependent plasticity: mechanisms, significance, and controversies

Long-term modification of synaptic strength is one of the basic mechanisms of memory formation and activity-dependent refinement of neural circuits. This idea was purposed by Hebb to provide a basis for the formation of a cell assembly. Repetitive correlated activity of pre-synaptic and post-synaptic neurons can induce long-lasting synaptic strength modification, the direction and extent of whi...

متن کامل

Spike timing dependent plasticity: mechanisms, significance, and controversies

Long-term modification of synaptic strength is one of the basic mechanisms of memory formation and activity-dependent refinement of neural circuits. This idea was purposed by Hebb to provide a basis for the formation of a cell assembly. Repetitive correlated activity of pre-synaptic and post-synaptic neurons can induce long-lasting synaptic strength modification, the direction and extent of whi...

متن کامل

cAMP-dependent enhancement of dihydropyridine-sensitive calcium channel availability in hippocampal neurons.

Dihydropyridine-sensitive calcium channels can be strongly modulated by cAMP-dependent phosphorylation. This modulation takes the form of increased channel availability in cardiac myocytes (for review, see McDonald et al., 1994) and has been suggested to be essential for voltage-dependent facilitation in adrenal chromaffin cells (Artalejo et al., 1992) and skeletal muscle (Sculptoreanu et al., ...

متن کامل

Calcium-dependent inactivation of the monosynaptic NMDA EPSCs in rat hippocampal neurons in culture.

The effects of increased dendritic calcium concentration ([Ca2+]i) induced by single action potentials on monosynaptic glutamatergic excitatory postsynaptic currents (EPSCs) were studied in cultured rat hippocampal neurons. To investigate the respective roles of pre- and postsynaptic elements in the depolarization-induced NMDAR inactivation, we have performed simultaneous paired whole-cell reco...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 16 3  شماره 

صفحات  -

تاریخ انتشار 1996